
CS KTU LECTURES

Data Structures – CST 201

Module - 3



CS KTU LECTURES

Syllabus

▪ Linked List and Memory Management

▪ Self Referential Structures

▪ Dynamic Memory Allocation

▪ Singly Linked List-Operations on Linked List.

▪ Doubly Linked List

▪ Circular Linked List

▪ Stacks using Linked List

▪ Queues using Linked List

▪ Polynomial representation using Linked List

▪ Memory allocation and de-allocation

▪ First-fit, Best-fit and Worst-fit allocation schemes



CS KTU LECTURES

DYNAMIC MEMORY ALLOCATION



CS KTU LECTURES

INTRODUCTION
 Since C is a structured language, it has some fixed rules for 

programming. 

 One of it includes changing the size of an array. 

 An array is collection of items stored at continuous memory locations. 



CS KTU LECTURES

INTRODUCTION

 As it can be seen that the length (size) of the array above
made is 9. But what if there is a requirement to change
this length (size).

 For Example,
 If there is a situation where only 5 elements are needed to be

entered in this array. In this case, the remaining 4 indices are just
wasting memory in this array. So there is a requirement to lessen
the length (size) of the array from 9 to 5.

 Take another situation. In this, there is an array of 9 elements
with all 9 indices filled. But there is a need to enter 3 more
elements in this array. In this case 3 indices more are required.
So the length (size) of the array needs to be changed from 9 to
12.

 This procedure is referred to as Dynamic Memory
Allocation in C.



CS KTU LECTURES

DYNAMIC MEMORY ALLOCATION

 Therefore, C Dynamic Memory Allocation can be
defined as a procedure in which the size of a data
structure (like Array) is changed during the runtime.

 C provides some functions to achieve these tasks.

 There are 4 library functions provided by C defined
under <stdlib.h> header file to facilitate dynamic
memory allocation in C programming.

 They are:
 malloc()

 calloc()

 free()

 realloc()



CS KTU LECTURES

malloc()

 “malloc” or “memory allocation” method in C is used to
dynamically allocate a single large block of memory
with the specified size.

 It returns a pointer of type void which can be cast into a
pointer of any form.

 It initializes each block with default garbage value.

 For Example:

ptr = (int*) malloc(100 * sizeof(int));
 Since the size of int is 2 bytes, this statement will allocate 200

bytes of memory. And, the pointer ptr holds the address of the first
byte in the allocated memory.

Syntax:

ptr = (data type*) malloc(byte-size) 



CS KTU LECTURES

calloc()
 “calloc” or “contiguous allocation” method in C is used to

dynamically allocate the specified number of blocks of memory
of the specified type.

 It initializes each block with a default value ‘0’

 For Example:

ptr = (float*) calloc(25, sizeof(float));

This statement allocates contiguous space in memory for 25
elements each with the size of the float.

Syntax:

ptr = (data-type*)calloc(n, element-size); 



CS KTU LECTURES

free()

 “free” method in C is used to dynamically de-allocate the
memory.

 The memory allocated using functions malloc() and
calloc() is not de-allocated on their own.

 Hence the free() method is used, whenever the dynamic
memory allocation takes place.

 It helps to reduce wastage of memory by freeing it.

Syntax:

 free(ptr);



CS KTU LECTURES

realloc()
 “realloc” or “re-allocation” method in C is used to

dynamically change the memory allocation of a

previously allocated memory.

 In other words, if the memory previously allocated with

the help of malloc or calloc is insufficient, realloc can be

used to dynamically re-allocate memory.

 re-allocation of memory maintains the already present

value and new blocks will be initialized with default

garbage value.

 Syntax:

ptr = realloc(ptr, newSize);

 where ptr is reallocated with new size 'newSize'.



CS KTU LECTURES

Arrays
▪ Arrays are used to store data elements in memory

▪ Advantage:

▪ Elements can be accessed fastly

▪ Disadvantages:

▪ Insertion and deletion is relatively expensive.

▪ It is a static data structure. Array size is fixed.

Memory resizing is not possible.

▪ Array require continuous memory locations to store

data.

▪ So, a new data structure(Linked List) is introduced to

overcome these disadvantages.



CS KTU LECTURES

Linked List
▪ Linked list is a dynamic data structure: Amount of

memory required can be varied during its use

▪ A Linked List is an Ordered Collection of homogenous

elements where the linear ordering is maintained using

links or pointers

▪ A linked list can grow or shrink in size as the program

runs

▪ Insertion and deletion can be performed fastly.



CS KTU LECTURES

Linked List
▪ Element in a linked list is termed as node

▪ A node consist of two fields

▪ DATA: To store the actual information

▪ LINK/POINTER:

▪ Used to point to the next node.

▪ It is actually an address of subsequent element

▪ In linked list adjacency between the elements are

maintained by means of links/pointers

DATA LINK



CS KTU LECTURES

Linked List

▪ A linked list is a series of connected nodes

▪ Each node contains at least

▪ Data (any type)

▪ Pointer to the next node in the list

▪ head: pointer to the first node

▪ The last node points to NULL

D1 D2 D3 D4

head

NULL



CS KTU LECTURES

Linked List

▪ Linked list can be classified into 4 groups

▪ Singly linked list

▪ Doubly linked list

▪ Circular linked list

▪ Circular Doubly linked list


