
CS KTU LECTURES

Data Structures – CST 201

Module - 3



CS KTU LECTURES

Syllabus

▪ Linked List and Memory Management

▪ Self Referential Structures

▪ Dynamic Memory Allocation

▪ Singly Linked List-Operations on Linked List.

▪ Doubly Linked List

▪ Circular Linked List

▪ Stacks using Linked List

▪ Queues using Linked List

▪ Polynomial representation using Linked List

▪ Memory allocation and de-allocation

▪ First-fit, Best-fit and Worst-fit allocation schemes



CS KTU LECTURES

DYNAMIC MEMORY ALLOCATION



CS KTU LECTURES

INTRODUCTION
 Since C is a structured language, it has some fixed rules for 

programming. 

 One of it includes changing the size of an array. 

 An array is collection of items stored at continuous memory locations. 



CS KTU LECTURES

INTRODUCTION

 As it can be seen that the length (size) of the array above
made is 9. But what if there is a requirement to change
this length (size).

 For Example,
 If there is a situation where only 5 elements are needed to be

entered in this array. In this case, the remaining 4 indices are just
wasting memory in this array. So there is a requirement to lessen
the length (size) of the array from 9 to 5.

 Take another situation. In this, there is an array of 9 elements
with all 9 indices filled. But there is a need to enter 3 more
elements in this array. In this case 3 indices more are required.
So the length (size) of the array needs to be changed from 9 to
12.

 This procedure is referred to as Dynamic Memory
Allocation in C.



CS KTU LECTURES

DYNAMIC MEMORY ALLOCATION

 Therefore, C Dynamic Memory Allocation can be
defined as a procedure in which the size of a data
structure (like Array) is changed during the runtime.

 C provides some functions to achieve these tasks.

 There are 4 library functions provided by C defined
under <stdlib.h> header file to facilitate dynamic
memory allocation in C programming.

 They are:
 malloc()

 calloc()

 free()

 realloc()



CS KTU LECTURES

malloc()

 “malloc” or “memory allocation” method in C is used to
dynamically allocate a single large block of memory
with the specified size.

 It returns a pointer of type void which can be cast into a
pointer of any form.

 It initializes each block with default garbage value.

 For Example:

ptr = (int*) malloc(100 * sizeof(int));
 Since the size of int is 2 bytes, this statement will allocate 200

bytes of memory. And, the pointer ptr holds the address of the first
byte in the allocated memory.

Syntax:

ptr = (data type*) malloc(byte-size) 



CS KTU LECTURES

calloc()
 “calloc” or “contiguous allocation” method in C is used to

dynamically allocate the specified number of blocks of memory
of the specified type.

 It initializes each block with a default value ‘0’

 For Example:

ptr = (float*) calloc(25, sizeof(float));

This statement allocates contiguous space in memory for 25
elements each with the size of the float.

Syntax:

ptr = (data-type*)calloc(n, element-size); 



CS KTU LECTURES

free()

 “free” method in C is used to dynamically de-allocate the
memory.

 The memory allocated using functions malloc() and
calloc() is not de-allocated on their own.

 Hence the free() method is used, whenever the dynamic
memory allocation takes place.

 It helps to reduce wastage of memory by freeing it.

Syntax:

 free(ptr);



CS KTU LECTURES

realloc()
 “realloc” or “re-allocation” method in C is used to

dynamically change the memory allocation of a

previously allocated memory.

 In other words, if the memory previously allocated with

the help of malloc or calloc is insufficient, realloc can be

used to dynamically re-allocate memory.

 re-allocation of memory maintains the already present

value and new blocks will be initialized with default

garbage value.

 Syntax:

ptr = realloc(ptr, newSize);

 where ptr is reallocated with new size 'newSize'.



CS KTU LECTURES

Arrays
▪ Arrays are used to store data elements in memory

▪ Advantage:

▪ Elements can be accessed fastly

▪ Disadvantages:

▪ Insertion and deletion is relatively expensive.

▪ It is a static data structure. Array size is fixed.

Memory resizing is not possible.

▪ Array require continuous memory locations to store

data.

▪ So, a new data structure(Linked List) is introduced to

overcome these disadvantages.



CS KTU LECTURES

Linked List
▪ Linked list is a dynamic data structure: Amount of

memory required can be varied during its use

▪ A Linked List is an Ordered Collection of homogenous

elements where the linear ordering is maintained using

links or pointers

▪ A linked list can grow or shrink in size as the program

runs

▪ Insertion and deletion can be performed fastly.



CS KTU LECTURES

Linked List
▪ Element in a linked list is termed as node

▪ A node consist of two fields

▪ DATA: To store the actual information

▪ LINK/POINTER:

▪ Used to point to the next node.

▪ It is actually an address of subsequent element

▪ In linked list adjacency between the elements are

maintained by means of links/pointers

DATA LINK



CS KTU LECTURES

Linked List

▪ A linked list is a series of connected nodes

▪ Each node contains at least

▪ Data (any type)

▪ Pointer to the next node in the list

▪ head: pointer to the first node

▪ The last node points to NULL

D1 D2 D3 D4

head

NULL



CS KTU LECTURES

Linked List

▪ Linked list can be classified into 4 groups

▪ Singly linked list

▪ Doubly linked list

▪ Circular linked list

▪ Circular Doubly linked list


